Risk-averse feasible policies for large-scale multistage stochastic linear programs
نویسندگان
چکیده
We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rollinghorizon time consistent policy. For each time step, a risk-averse problem with constraints that are deterministic for the current time step and uncertain for future times is solved. To each uncertain constraint corresponds both a chance and a Conditional Value-at-Risk constraint. We show that the resulting risk-averse problems are numerically tractable, being at worst conic quadratic programs. For the particular case in which uncertainty appears only on the right-hand side of the constraints, such risk-averse problems are linear programs. We show how to write dynamic programming equations for these problems and define robust recourse functions that can be approximated recursively by cutting planes. The methodology is assessed and favourably compared with Stochastic Dual Dynamic Programming on a real size water-resource planning problem. AMS subject classifications: 90C15, 91B30.
منابع مشابه
SDDP for multistage stochastic linear programs based on spectral risk measures
We consider risk-averse formulations of multistage stochastic linear programs. For these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic programming equations can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse functions. This allows us to de...
متن کاملSampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures
We define a risk-averse nonanticipative feasible policy for multistage stochastic programs and propose a methodology to implement it. The approach is based on dynamic programming equations written for a risk-averse formulation of the problem. This formulation relies on a new class of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of such risk functio...
متن کاملThe value of rolling-horizon policies for risk-averse hydro-thermal planning
We consider the optimal management of a hydro-thermal power system in the mid and long terms. From the optimization point of view, this amounts to a large-scale multistage stochastic linear program, often solved by combining sampling with decomposition algorithms, like stochastic dual dynamic programming. Such methodologies, however, may entail prohibitive computational time, especially when ap...
متن کاملConvergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the al...
متن کاملStochastic programming approach to optimization under uncertainty
In this paper we discuss computational complexity and risk averse approaches to two and multistage stochastic programming problems. We argue that two stage (say linear) stochastic programming problems can be solved with a reasonable accuracy by Monte Carlo sampling techniques while there are indications that complexity of multistage programs grows fast with increase of the number of stages. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 138 شماره
صفحات -
تاریخ انتشار 2013